I PRELIMINARIES
1. Introduction
- What Is Business Analytics?
- What Is Machine Learning?Â
- Machine Learning, AI, and Related Terms 5Â
- Big DataÂ
- Data ScienceÂ
- Why Are There So Many Different Methods?Â
- Terminology and NotationÂ
- Road Maps to This BookÂ
- Using RapidMiner StudioÂ
2.Overview of the Machine Learning ProcessÂ
- Â Introduction
- Â Core Ideas in Machine LearningÂ
- Â The Steps in a Machine Learning ProjectÂ
- Â Preliminary StepsÂ
- Â Predictive Power and OverfittingÂ
- Â Building a Predictive Model with RapidMinerÂ
- Â Using RapidMiner for Machine LearningÂ
- Automating Machine Learning SolutionsÂ
- Â Ethical Practice in Machine LearningÂ
II DATA EXPLORATION AND DIMENSION REDUCTION
3. Data VisualizationÂ
- Â IntroductionÂ
- Â Data Examples
- Â Basic Charts: Bar Charts, Line Charts, and Scatter PlotsÂ
- Â Multidimensional VisualizationÂ
- Â Specialized Visualizations
- Â Summary: Major Visualizations and Operations, by Machine Learning Goal
 4. Dimension ReductionÂ
- Â IntroductionÂ
- Curse of DimensionalityÂ
- Practical Considerations
- Data Summaries
- Correlation AnalysisÂ
- Reducing the Number of Categories in Categorical AttributesÂ
- Converting a Categorical Attribute to a Numerical Attribute
- Principal Component AnalysisÂ
- Dimension Reduction Using Regression Models
- Dimension Reduction Using Classification and Regression Trees
III PERFORMANCE EVALUATION
5. Evaluating Predictive PerformanceÂ
- Â Introduction
- Â Evaluating Predictive Performance
- Judging Classifier PerformanceÂ
- Â Judging Ranking Performance
- Â Oversampling
 IV PREDICTION AND CLASSIFICATION METHODS
6. Multiple Linear Regression
- Â IntroductionÂ
- Â Explanatory vs. Predictive Modelling
- Estimating the Regression Equation and PredictionÂ
- Variable Selection in Linear RegressionÂ
 7. k-Nearest Neighbour’s (k-NN)Â
The k-NN Classifier (Categorical Label)Â
- Â k-NN for a Numerical LabelÂ
-  Advantages and Shortcomings of k-NN AlgorithmsÂ
8. The Naïve Bayes Classifier
- Â IntroductionÂ
- Â Applying the Full (Exact) Bayesian Classifier
-  Solution: Naïve Bayes
- Advantages and Shortcomings of the Naïve Bayes Classifier
9. Classification and Regression Trees Â
- Â Avoiding Overfitting
- Â Classification Rules from Trees
- Classification Trees for More Than Two ClassesÂ
- Regression TreesÂ
- Improving Prediction: Random Forests and Boosted TreesÂ
- Â Advantages and Weaknesses of a TreeÂ
10. Logistic RegressionÂ
- Â IntroductionÂ
- The Logistic Regression ModelÂ
- Â Example: Acceptance of Personal Loan
- Â Logistic Regression for Multi-class ClassificationÂ
- Â Example of Complete Analysis: Predicting Delayed FlightsÂ
11. Neural NetworksÂ
- Â IntroductionÂ
- Concept and Structure of a Neural Network
- Â Fitting a Network to Data
- Required User Input
- Exploring the Relationship Between Predictors and Target AttributeÂ
- Deep Learning
- Advantages and Weaknesses of Neural NetworksÂ
 12. Discriminant AnalysisÂ
- Â IntroductionÂ
- Distance of a Record from a Class
- Fisher’s Linear Classification Functions
- Classification Performance of Discriminant Analysis
- Prior ProbabilitiesÂ
- Unequal Misclassification Costs
- Classifying More Than Two ClassesÂ
- Advantages and Weaknesses
13. Generating, Comparing, and Combining Multiple ModelsÂ
- Â Automated Machine Learning (Auto ML)
- Â Explaining Model Predictions
- Â EnsemblesÂ
- Â SummaryÂ
V INTERVENTION AND USER FEEDBACK
 14. Interventions: Experiments, Uplift Models, and Reinforcement LearningÂ
- Â A/B Testing
- Â Uplift (Persuasion) Modelling
- Reinforcement LearningÂ
- Summary
VI MINING RELATIONSHIPS AMONG RECORDS
 15. Association Rules and Collaborative FilteringÂ
- Â Association Rules
- Â Collaborative FilteringÂ
- Â Summary
 16. Cluster AnalysisÂ
- Introduction
- Â Measuring Distance Between Two RecordsÂ
- Measuring Distance Between Two ClustersÂ
- Â Hierarchical (Agglomerative) Clustering
-  Non-Hierarchical Clustering: The k-Means AlgorithmÂ
 VII FORECASTING TIME SERIES
17. Handling Time SeriesÂ
- Â Introduction
- Â Descriptive vs. Predictive Modelling
- Â Popular Forecasting Methods in Business
- Time Series ComponentsÂ
- Data Partitioning and Performance EvaluationÂ
18. Regression-Based Forecasting
- Â A Model with TrendÂ
- Â A Model with Seasonality
- Â A Model with Trend and SeasonalityÂ
- Â Autocorrelation and ARIMA ModelsÂ
19. Smoothing and Deep Learning Methods for ForecastingÂ
- Â Smoothing Methods: Introduction
- Â Moving AverageÂ
- Simple Exponential SmoothingÂ
- Â Advanced Exponential SmoothingÂ
- Â Deep Learning for ForecastingÂ
VIII DATA ANALYTICS
20. Social Network AnalyticsÂ
- Â IntroductionÂ
- Â Directed vs. Undirected NetworksÂ
- Â Visualizing and Analysing Networks
- Â Social Data Metrics and Taxonomy
- Â Using Network Metrics in Prediction and ClassificationÂ
- Collecting Social Network Data with RapidMinerÂ
- Advantages and DisadvantagesÂ
21. Text MiningÂ
- Â IntroductionÂ
- The Tabular Representation of Text: Term–Document Matrix and “Bag-of-Words’’
- Â Bag-of-Words vs. Meaning Extraction at Document LevelÂ
- Â Pre-processing the Text
- Â Implementing Machine Learning MethodsÂ
- Â Example: Online Discussions on Autos and ElectronicsÂ
- Example: Sentiment Analysis of Movie ReviewsÂ
- Â Summary
22. Responsible Data ScienceÂ
- Â IntroductionÂ
- Â Unintentional HarmÂ
- Legal ConsiderationsÂ
- Â Principles of Responsible Data ScienceÂ
- Â A Responsible Data Science Framework
- Documentation Tools
- Â Example: Applying the RDS Framework to the COMPAS ExampleÂ
- Â Summary
 IX CASES
 23. CasesÂ
- Â Charles Book Club
- German CreditÂ
- Tayko Software CataloguerÂ
- Â Political PersuasionÂ
- Â Taxi CancellationsÂ
- Â Segmenting Consumers of Bath Soap
- Â Direct-Mail Fundraising
- CatLog Cross-Selling
- Â Time Series Case: Forecasting Public Transportation DemandÂ
- Â Loan Approval
Conclusion:
This course provided a hands-on introduction to machine learning using RapidMiner, from data preparation to model evaluation. Continue exploring its advanced features to enhance your data science skills and drive actionable insights in your projects.
If you are looking for customized info, Please you can contact us here
Reference
|
Reviews
There are no reviews yet.