Description
Deep Learning with MATLAB : It is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience. Deep learning uses neural networks to learn useful Representations of Features directly from data.
Transfer Learning for Image Classification
Objective: Perform image Classification using Pretrained networks. Use transfer learning to train Customized Classification networks.
1. Pretrained networks
2. Image datastores
3. Transfer learning
4. Network evaluation
Interpreting Network Behaviour
Objective: Gain insight into how a network is operating by Visualizing image data as it passes through the network. Apply this technique to different kinds of images.
1. Activations
2. Feature extraction for machine learning
Creating Networks on MATLAB
Objective: Build Convolutional networks from scratch. Understand how information is passed between network layers and how different types of layers work.
1. Training from scratch
2. Neural networks
3. Convolution layers and filters
Training a Network
Objective: Understand how training Algorithms work. Set training options to monitor and control training.
1. Network training
2. Training progress plots
3. Validation
Improving Network Performance
Objective: Choose and Implement Modifications to training Algorithm options, network architecture, or training data to improve network performance.
1. Training options
2. Directed acyclic graphs
3. Augmented datastores
Performing Image Regression
Objective: Create Convolutional networks that can predict Continuous numeric responses.
1. Transfer learning for regression
2. Evaluation metrics for regression networks
Using Deep Learning for Computer Vision
Objective:Â Train networks to locate and label specific objects within images.
1. Image application workflow
2. Object detection
Classifying Sequence Data
Objective: Build and train networks to perform Classification on ordered Sequences of data, such as time series or sensor data.
1. Long short-term memory networks
2. Sequence classification
3. Sequence preprocessing
4. Categorical sequences
Generating Sequences of Output
Objective: Use Recurrent networks to create Sequences of Predictions.
1. Sequence to sequence classification
2. Sequence forecasting
For more inputs on Deep Learning with MATLAB you can connect here.
Contact the L&D Specialist at Locus IT.
Locus Academy has more than a decade experience in delivering the training, staffing on Deep Learning with MATLABÂ for corporates across the globe. The participants for the training, staffing on Deep Learning with MATLABÂ are extremely satisfied and are able to implement the learnings in their on going projects.